[2] Trans-KBLSTM: An External Knowledge Enhanced Transformer BiLSTM Model for Tabular Reasoning

Natural language inference on tabular data is a challenging task. Existing approaches lack the world and common sense knowledge required to perform at a human level. While massive amounts of KG data exist, approaches to integrate them with deep learning models to enhance tabular reasoning are uncommon. In this paper, we investigate a new approach using BiLSTMs to incorporate knowledge effectively into language models. Through extensive analysis, we show that our proposed architecture, Trans-KBLSTM improves the benchmark performance on InfoTabS, a tabular NLI dataset.

Paper Code Website

[1] Extraction and Calculation of Roadway Area from Satellite Images Using Improved Deep Learning Model and Post-Processing

Roadway area calculation is a novel problem in remote sensing and urban planning. This paper models this problem as a two-step problem, roadway extraction, and area calculation. Roadway extraction from satellite images is a problem that has been tackled many times before. This paper proposes a method using pixel resolution to calculate the area of the roads covered in satellite images. The proposed approach uses novel U-net and Resnet architectures called U-net++ and ResNeXt. The state-of-the-art model is combined with the proposed efficient post-processing approach to improve the overlap with ground truth labels. The performance of the proposed road extraction algorithm is evaluated on the Massachusetts dataset and it is shown that the proposed approach outperforms the existing solutions which use models from the U-net family.